Appendix J: Evaluating Algebraic Expressions

OpenStax

Evaluating Algebraic Expressions

In the last section, we simplified expressions using the order of operations. In this section, we’ll evaluate expressions—again following the order of operations.

To evaluate an algebraic expression means to find the value of the expression when the variable is replaced by a given number. To evaluate an expression, we substitute the given number for the variable in the expression and then simplify the expression using the order of operations.

EXAMPLE 1

Evaluate x+7 when

  1.  \phantom{\rule{0.2em}{0ex}}x=3
  2.  \phantom{\rule{0.2em}{0ex}}x=12
Solution

a. To evaluate, substitute 3 for x in the expression, and then simplify.

.
Substitute. .
Add. .

When x=3, the expression x+7 has a value of 10.

b. To evaluate, substitute 12 for x in the expression, and then simplify.

.
Substitute. .
Add. .

When x=12, the expression x+7 has a value of 19.

Notice that we got different results for parts a) and b) even though we started with the same expression. This is because the values used for x were different. When we evaluate an expression, the value varies depending on the value used for the variable.

TRY IT 1.1

Evaluate:

y+4\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}

  1.  \phantom{\rule{0.2em}{0ex}}y=6\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}
  2.  \phantom{\rule{0.2em}{0ex}}y=15
Show Answer
  1.  10
  2.  19

TRY IT 1.2

Evaluate:

a-5\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}

  1.  \phantom{\rule{0.2em}{0ex}}a=9\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}
  2.  \phantom{\rule{0.2em}{0ex}}a=17
Show Answer
  1.  4
  2.  12

EXAMPLE 2

Evaluate 9x-2,\text{when}\phantom{\rule{0.2em}{0ex}}

  1.  \phantom{\rule{0.2em}{0ex}}x=5\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}
  2.  \phantom{\rule{0.2em}{0ex}}x=1
Solution

Remember ab means a times b, so 9x means 9 times x.

a. To evaluate the expression when x=5, we substitute 5 for x, and then simplify.

.
. .
Multiply. .
Subtract. .

b. To evaluate the expression when x=1, we substitute 1 for x, and then simplify.

.
. .
Multiply. .
Subtract. .

Notice that in part a) that we wrote 9\cdot 5 and in part b) we wrote 9\left(1\right). Both the dot and the parentheses tell us to multiply.

TRY IT 2.1

Evaluate:

8x-3,\text{when}\phantom{\rule{0.2em}{0ex}}

  1. \phantom{\rule{0.2em}{0ex}}x=2\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}
  2. \phantom{\rule{0.2em}{0ex}}x=1
Show Answer
  1.  13
  2.  5

TRY IT 2.2

Evaluate:

4y-4,\text{when}\phantom{\rule{0.2em}{0ex}}

  1. \phantom{\rule{0.2em}{0ex}}y=3\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}
  2. \phantom{\rule{0.2em}{0ex}}y=5
Show Answer
  1.  8
  2.  16

EXAMPLE 3

Evaluate {x}^{2} when x=10.

Solution

We substitute 10 for x, and then simplify the expression.

.
. .
Use the definition of exponent. .
Multiply. .

When x=10, the expression {x}^{2} has a value of 100.

TRY IT 3.1

Evaluate:

{x}^{2}\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=8.

Show Answer

64

TRY IT 3.2

Evaluate:

{x}^{3}\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=6.

Show Answer

216

EXAMPLE 4

\text{Evaluate}\phantom{\rule{0.2em}{0ex}}{2}^{x}\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=5.

Solution

In this expression, the variable is an exponent.

.
. .
Use the definition of exponent. .
Multiply. .

When x=5, the expression {2}^{x} has a value of 32.

TRY IT 4.1

Evaluate:

{2}^{x}\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=6.

Show Answer

64

TRY IT 4.2

Evaluate:

{3}^{x}\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=4.

Show Answer

81

EXAMPLE 5

\text{Evaluate}\phantom{\rule{0.2em}{0ex}}3x+4y-6\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=10\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}y=2.

Solution

This expression contains two variables, so we must make two substitutions.

.
. .
Multiply. .
Add and subtract left to right. .

When x=10 and y=2, the expression 3x+4y-6 has a value of 32.

TRY IT 5.1

Evaluate:

2x+5y-4\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=11\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}y=3

Show Answer

33

TRY IT 5.2

Evaluate:

5x-2y-9\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=7\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}y=8

Show Answer

10

EXAMPLE 6

\text{Evaluate}\phantom{\rule{0.2em}{0ex}}2{x}^{2}+3x+8\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=4.

Solution

We need to be careful when an expression has a variable with an exponent. In this expression, 2{x}^{2} means 2\cdot x\cdot x and is different from the expression {\left(2x\right)}^{2}, which means 2x\cdot 2x.

.
. .
Simplify {4}^{2}. .
Multiply. .
Add. .

TRY IT 6.1

Evaluate:

3{x}^{2}+4x+1\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=3.

Show Answer

40

TRY IT 6.2

Evaluate:

6{x}^{2}-4x-7\phantom{\rule{0.2em}{0ex}}\text{when}\phantom{\rule{0.2em}{0ex}}x=2.

Show Answer

9

License

Share This Book